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ON THE CIRCULATION MANIFOLD FOR TWO ADJACENT LIFTING SECTIONS ∗

LUCA ZANNETTI† AND ANGELO IOLLO‡

Abstract. The circulation functional relative to two adjacent lifting sections is studied for two cases. In
the first case we consider two adjacent circles. The circulation is computed as a function of the displacement
of the secondary circle along the axis joining the two centers and of the angle of attack of the secondary
circle. The gradient of such functional is computed by deriving a set of elliptic functions with respect both
to their argument and to their period. In the second case studied, we considered a wing-flap configuration.
The circulation is computed by some implicit mappings, whose differentials with respect to the variation of
the geometrical configuration in the physical space are found by divided differences. Configurations giving
rise to local maxima and minima in the circulation manifold are presented.
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1. Introduction. Considering the growth of research and industrial interest in aerodynamic shape
optimization, we felt that a reference test case amenable to analytic solution and yet complex enough to be
representative of problems arising from real world applications, was lacking. For this reason we propose in
this paper two optimization test cases based on the potential flow solution. The first is represented by the
problem of finding an extremum of the circulation manifold relative to the flow about two circles, when the
secondary circle and its trailing edge are displaced. The global circulation and its gradient are computed
by analytical tools. In the second test case, the problem of computing the circulation and its gradient for
the flow about two airfoils, when the second airfoil is translated and rotated with respect to the first one, is
solved.

The solution is determined by a classical analytical technique that requires two steps. The first step,
which is common to both test cases, is the determination of the flow solution in the plane of the two circles.
In the plane of the airfoils only 3 parameters are varied: the position of the leading edge of the flap (Xs, Ys)
and its deflection Θ. On the plane of the circles it is shown that there are 6 parameters changing as the flap
is moving in the physical space. The six parameters are the modulus and direction of the speed at infinity,
the radii of the the two circles and the angles defining the position of the two trailing edges. Using the
Lagally [1] solution for the flow about two circles, it was possible to compute the analytical differential of the
total circulation about the two circles. The second solution step is the transformation of the two airfoils into
two circles using a Theodorsen transform for the primary airfoil and a Garrick transform for the other. Any
two airfoils can be transformed by this technique. Yet, the mappings used are known implicitly by means of
a FFT. Therefore, for simplicity, the Jacobian of these transformations with respect to the translation and
rotation of the flap is computed by divided differences. Such differentiation can be conducted to any order
of accuracy at a very limited computational cost.
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Optimization consists in defining a functional which represent the cost (or merit) of a solution, as
a function of the geometrical configuration. The optimal solution is the minimum (or the maximum) of
such a functional. An optimization algorithm is based on three ingredients: the flow solver, a routine to
compute the gradient, and an optimizer, i.e., a strategy to march toward the extremum of the functional,
see for example [2] and references therein. Using the exact computation of the gradient that we propose
it is possible to validate the accuracy of numerical gradients obtained by adjoint or sensitivity analysis
formulations. Furthermore, general type descent algorithms can be tested using the exact gradient given in
this paper, in order to evaluate performance in the context of aerodynamic optimization. For example, the
effects of local minima on the performance of various optimizers can be investigated. There was another
attempt at computing an exact test case for the circulation about wing-flap section configurations [3]. It
was found that the derivation presented therein is based on some erroneous assumptions. In fact, because
of the motion of the flap, the primary airfoil shape and the flap shape are deformed, making that test case
of no practical relevance.

Section 2 is devoted to the study of the analytical gradient of the circulation about two adjacent circles
with given trailing edge. A first exact test case is presented. In Section 3 the mapping from the two airfoils
plane to the two circles plane is sketched. Finally, he results relative to the second test case proposed,
obtained by divided differences, are presented.

2. The circulation manifold of two adjacent circles. In this section we will assume that the
two profiles are indeed two circles for the reason that in this case it is possible to determine by analytical
differentiation the dependence of the circulation and hence of the lift, as a function of some geometrical
parameters.

Consider two circles (Fig. 2.1-2.3), the first is the unit circle centerd at the origin, the second has radius
rs and center at x = xs on the real axis of the plane z = x + iy. The two circles are immersed in a potential
incompressible flow. The speed at infinity of such flow is q∞ = |q∞|eiα0 and the Kutta condition is imposed
at the points zp and zs, which belong to the primary and secondary circle respectively. They are determined
by ϕp = arg(zp) and ϕs = arg(zs). The solution to this flow field is due to Lagally [1] and Ferrari [4].

Fig. 2.1. Plane of the two circles.

Let

b =
x2

s − r2
s + 1

2xs
c =

√
(xs − b)2 − r2

s(2.1)
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Fig. 2.2. Plane of the concentric circles.

Fig. 2.3. Plane of the rectangle B.

The two circles considered belong to a family of Apollonius circles with focal points at c + b and c − b

on the real axis. The mapping

ν =
z − b

c
(2.2)

transforms this Apollonius manifold to another, whose focal points are at ν = −1 and ν = 1.
Let us exploit the invariance of the complex potential w under conformal mappings, and let us consider

the flow on the transformed plane ν. The complex velocity at infinity is

Q∗
∞ = |Q∞|e−iβ0 = lim

ν→∞
dw

dν
= lim

z→∞
dw

dz

dz

dν
= c|q∞|e−iα0(2.3)

The bilinear transform

µ =
ν + 1
ν − 1

(2.4)

maps the two circles in the plane z onto two concentric circles with center in the origin. The internal circle,
whose radius is ri < 1, corresponds the primary circle, the external, whose radius is re > 1, corresponds to
the secondary circle. The region bounded by the two circles corresponds to the region where the flow field
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takes place on z and the point µ = 1 corresponds to infinity on the plane z as well as on ν. The trailing
edges zp and zs are mapped to µp = ri exp(iϑp) and µs = re exp(iϑs) respectively.

Now, the mapping

λ = log µ(2.5)

transforms the region bounded by the concentric circles into a periodic row of rectangles in the plane
λ = ξ + iη. We denote by B the rectangle −β ≤ ξ < α and −π ≤ η < π, with β = − log ri and α = log re.
The period of this row of rectangles is 2iπ. The primary circle goes onto the segment ξ = −β, −π ≤ η < π,
while the secondary circle goes onto the segment ξ = α, −π ≤ η < π. The trailing edges are mapped to
λp = −β + iϑp, and λs = α + iϑs.

The complex speed inside B is singular only at the origin λ = 0, which corresponds to infinity in ν and
z. The possible singularities can be a pole of order 2, responsible for the far field speed on the physical
plane, and a pole of order 1, relative to a possible vortex at infinity whose intensity is equal to the opposite
of the circulation about the two circles. In addition, the complex speed, which is periodic in the direction of
the imaginary axis with period 2iπ, must be periodic in the direction of the real axis with period 2(α + β)
in order to satisfy the impermeability condition at the walls of the two circles. As a matter of fact, the
impermeability condition is obtained by successive reflections with respect to the two sides of the rectangle,
so that it is periodic with period 2(α + β) in that direction. Therefore, the period is formed by B and the
mirror image of B. We conclude that the complex speed is expressed by an elliptic function with semi-periods
ω = α + β and ω̄ = iπ, and that it has poles of order 1 and 2 located in λ = 0 and λ = −2β. Hence, the
complex speed is

dw

dλ
= − iΓ

2π
[ζ(λ) − ζ(λ + 2β)]− 2[Q∗

∞℘(λ)−Q∞℘(λ + 2β)] + iκ(2.6)

and, therefore, the complex potential is

w = − iΓ
2π

log
σ(λ)

σ(λ + 2β)
+ 2[Q∗

∞ζ(λ) −Q∞ζ(λ + 2β)] + iκλ(2.7)

where ζ, ℘, σ, are Weierstrass functions with semi-periods ω = α + β, ω̄ = iπ.

The constants Γ and κ are respectively the global circulation and the circulation about the secondary
circle. They are determined by imposing the Kutta conditions

(
dw

dλ

)
λ=λp

=
(

dw

dλ

)
λ=λs

= 0(2.8)

We have

Γ =
−4πi(Cs − Cp)

Ap −As
, κ =

Γ
2π

Ap − 2iCp(2.9)

where

Cs = Q∗
∞℘(λs)−Q∞℘(λs + 2β)

Cp = Q∗
∞℘(λp)−Q∞℘(λp + 2β)

As = ζ(λs)− ζ(λs + 2β)

Ap = ζ(λp)− ζ(λp + 2β)(2.10)
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2.1. Differentiation. Two adjacent airfoils can always be mapped using the Theodorsen-Garrick trans-
form onto two circles belonging to an Apollonius family of circles on the complex plane ν, with focal points
at ν = −1 and ν = 1. When either the geometric or the flow configuration of the two airfoils changes, 6
parameters may change on the plane of the two circles

|Q∞|, β0, α, β, ϑs, ϑp(2.11)

These parameters, in turn, determine the circulation Γ (see Eq. (2.9)) and hence the lift. Consider the
problem of two adjacent rigid airfoils, the lift is a function of 4 parameters: the angle of attack and the three
degrees of freedom of the second airfoil (every geometric or flow configuration can be reduced to the case of
fixed primary profile and q∞ = 1). Therefore keeping constant the angle of attack at ∞, in the easiest case
of two circular airfoils the degrees of freedom to be considered are 3: the distance between the centers xs,
and the position of the two trailing edges ϕs, ϕp. In such simple case the circulation (and the lift) is a 3
parameter manifold in a 6-dimensional space represented by the parameters (2.11). Therefore, in general we
can express all derivatives of the circulation as a combination of the derivatives of Eqs. (2.10) with respect
to the parameters (2.11).

Since ω = α + β, to differentiate with respect to α or β implies differentiation with respect to the
semiperiod of the elliptic functions ω. These derivatives are given in Section 2.2.

2.1.1. Derivative ∂α.

∂Cs

∂α
= Q∗

∞

[
℘′(λs) +

∂℘(λs)
∂ω

]
−Q∞

[
℘′(λs + 2β) +

∂℘(λs + 2β)
∂ω

]

∂Cp

∂α
= Q∗

∞
∂℘(λp)

∂ω
−Q∞

∂℘(λp + 2β)
∂ω

∂As

∂α
=

[
−℘(λs) +

∂ζ(λs)
∂ω

]
−

[
−℘(λs + 2β) +

∂ζ(λs + 2β)
∂ω

]

∂Ap

∂α
=

∂ζ(λp)
∂ω

− ∂ζ(λp + 2β)
∂ω

(2.12)

2.1.2. Derivative ∂β.

∂Cs

∂β
= Q∗

∞
∂℘(λs)

∂ω
−Q∞

[
2℘′(λs + 2β) +

∂℘(λs + 2β)
∂ω

]

∂Cp

∂β
= Q∗

∞

[
−℘′(λp) +

∂℘(λp)
∂ω

]
−Q∞

[
℘′(λp + 2β) +

∂℘(λp + 2β)
∂ω

]

∂As

∂β
=

∂ζ(λs)
∂ω

−
[
−2℘(λs + 2β) +

∂ζ(λs + 2β)
∂ω

]

∂Ap

∂β
= ℘(λp) +

∂ζ(λp)
∂ω

−
[
−℘(λp + 2β) +

∂ζ(λp + 2β)
∂ω

]
(2.13)

2.1.3. Derivative ∂ϑs .

∂Cs

∂ϑs
= i[Q∗

∞℘′(λs)−Q∞℘′(λs + 2β)]

∂Cp

∂ϑs
= 0

∂As

∂ϑs
= i[−℘(λs) + ℘(λs + 2β)]

∂Ap

∂ϑs
= 0(2.14)
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2.1.4. Derivative ∂ϑP .

∂Cs

∂ϑP
= 0

∂Cp

∂ϑs
= i[Q∗

∞℘′(λP )−Q∞℘′(λP + 2β)]

∂As

∂ϑs
= 0

∂Ap

∂ϑs
= i[−℘(λP ) + ℘(λP + 2β)](2.15)

2.1.5. Derivative ∂|Q∞|.

∂Cs

∂|Q∞| =
Cs

|Q∞|
∂Cp

∂|Q∞| =
Cp

|Q∞|
∂As

∂|Q∞| = 0

∂Ap

∂|Q∞| = 0(2.16)

2.1.6. Derivative ∂β0.

∂Cs

∂β0
= −i[Q∗

∞℘(λs) + Q∞℘(λs + 2β)]

∂Cp

∂β0
= −i[Q∗

∞℘(λp) + Q∞℘(λp + 2β)]

∂As

∂β0
= 0

∂Ap

∂β0
= 0(2.17)

2.2. Derivative of the Weierstrass functions with respect to the period. When the geometric
configuration varies on the physical plane, the radii ri, re change as well. Therefore on the plane λ the semi-
period ω = α + β of the elliptic functions ℘(u; ω, ω̄) and ζ(u; ω, ω̄) of Weierstrass varies when the geometric
configuration is changing. It follows that in the derivatives of Eqs. (2.12-2.13) with respect to α and β,
besides the partial derivatives of ℘(u; ω, ω̄) and ζ(u; ω, ω̄) with respect to u, there appear the derivatives
with respect to ω. For example, consider the derivative with respect to α of ℘(λs), appearing in ∂αCs. Since
λs = α + iϑs, we have

∂℘(u = α + iϑs; ω = α + β, ω̄ = iπ)
∂α

=
∂℘(u; ω, ω̄)

∂u

∂u

∂α
+

∂℘(u; ω, ω̄)
∂ω

∂ω

∂α

We mention in passing that

∂ζ(u)
∂u

= −℘(u),
∂℘(u)

∂u
= ℘′(u)(2.18)

On the contrary, the derivation of these functions with respect to the semi-period is not as easy.
It is convenient both for the computation and for the derivation to express ζ(u) and ℘(u) in terms of

Jacobi ϑα(v) functions [5]:

ζ(u) =
1
2ω

ϑ′1(v)
ϑ1(v)

+ 2ηv(2.19)

℘(u) = e1 +
1

4ω2

[
ϑ′1(0)
ϑ2(0)

ϑ2(v)
ϑ1(v)

]2

(2.20)
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with

v =
u

2ω
(2.21)

η = − 1
12ω

ϑ′′′1 (0)
ϑ′1(0)

(2.22)

e1 =
1
12

(π

ω

)2

[ϑ4
3(0) + ϑ4

4(0)](2.23)

where ′ denotes derivation with respect to v. Jacobi ϑα(v) functions can be expressed as

ϑ1(v) = 2q
1
4

∞∑
n=0

(−1)nqn(n+1) sin[(2n + 1)πv]

ϑ2(v) = 2q
1
4

∞∑
n=0

qn(n+1) cos[(2n + 1)πv]

ϑ3(v) = 1 + 2
∞∑

n=1

qn2
cos(2nπv)

ϑ4(v) = 1 + 2
∞∑

n=1

(−1)nqn2
cos(2nπv)(2.24)

with

q = eiπτ , τ =
ω̄

ω
(2.25)

The convergence rate of the series in Eqs. (2.24) is high when |ω| ≤ |ω̄| and Im(τ) > 0. It is always possible
to satisfy such conditions with a proper choice of the rectangle periods. Up to now we always assumed
ω = α + β, ω̄ = iπ, and hence the first condition is not always met. If it turns out that |ω| > |ω̄|, it is
possible to use the allowed transformations for the periods of elliptic functions (see [5]), as the periods are
not uniquely defined. In our case we can define new semi-periods ω̇ and ˙̄ω which are obtained from the
previous by means of a transformation of first order

ω̇ = ω̄, ˙̄ω = −ω(2.26)

so that the conditions mentioned are both satisfied.
Finally, we obtain

∂ζ(u)
∂ω

=
1

2Ωϑ1(v)

[
−J

u

2Ω2
ϑ′′1 (v) +

∂ϑ′1(v)
∂ω

]
−

+
ϑ′1(v)

2Ωϑ2
1(v)

[
−J

u

2Ω2
ϑ′1(v) +

∂ϑ1(v)
∂ω

]
−

+J

(
1

2Ω2

ϑ′1(v)
ϑ1(v)

+
uη

ω2

)
+

u

Ω
∂η

∂ω
(2.27)

∂℘(u)
∂ω

=
∂e1

∂ω
+ 2(℘(u)− e1)

[
−J

Ω
+

∂ϑ′1(0)
∂ω

1
ϑ′1(0)

− ∂ϑ2(0)
∂ω

1
ϑ2(0)

]
+

+2(℘(u)− e1)


−J

u

2Ω2
ϑ′2(v) +

∂ϑ2(v)
∂ω

ϑ2(v)
−

J
u

2Ω2
ϑ′1(v) +

∂ϑ1(v)
∂ω

ϑ1(v)


(2.28)

where Ω = ω = α− β and J = 1 if |ω| ≤ |ω̄|, whereas Ω = ω̄ = iπ and J = 0 if |ω| > |ω̄|.
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2.3. Differentiation of µ(z). Let µ(z) be the chain of transformations which leads from the plane of
the two adjacent circles z to µ, the plane of the concentric circles. Keeping α0 and ϕp fixed, the mapping
is uniquely defined as a function of xs and ϕs. We derive the parameters (2.11), keeping a fixed velocity at
infinity, with respect to xs and ϕs. These derivatives involve a, b, ri and re. It is ri = µ(−1), re = µ(xs +rs).

∂b

∂xs
= b

(
2xs

x2
s − r2

s + 1
− 1

xs

)
(2.29)

∂c

∂xs
=

(xs − b)(1− ∂b

∂xs
)

c
(2.30)

∂α

∂xs
=

1− ∂b

∂xs
+

∂c

∂xs

xs + rs − b + c
−

1− ∂b

∂xs
− ∂c

∂xs

xs + rs − b − c
(2.31)

∂β

∂xs
=

∂b

∂xs
− ∂c

∂xs

c− b− 1
+

∂b

∂xs
+

∂c

∂xs

c + b + 1
(2.32)

∂θs

∂xs
= Im

(
∂λs

∂xs

)
= Im




1− ∂b

∂xs
+

∂c

∂xs

zs − b + c
−

1− ∂b

∂xs
− ∂c

∂xs

zs − b− c


(2.33)

∂θp

∂xs
= Im

(
∂λp

∂xs

)
= Im



− ∂b

∂xs
+

∂c

∂xs

c− b + zp
+

∂b

∂xs
+

∂c

∂xs

−c− b + zp


(2.34)

∂θs

∂ϕs
= Im

(
∂λs

∂ϕs

)
=(2.35)

Im

(
rs(− sinϕs + i cosϕs)

zs − b + c
− rs(− sinϕs + i cosϕs)

zs − b− c

)

whereas

∂α

∂θs
=

∂β

∂θs
=

∂θp

∂θs
= 0(2.36)

2.4. Circulation manifold. As we change xs and θs there are four remarkable situations. The lift may
asymptoticaly increase or decrease with increasing distance between the two circles. In addition there may
be a local maximum, or a local minimum. The variation of θs does not give rise to any interesting change in
the shape of the manifold, except in Fig. 2.10 where a local maximum of the circulation with respect to θs is
shown. The different behaviors are due to the interplay between the radius of the secondary circle and θp, as
it is shown in the following figures. This is basically the reason for which this test case may be interesting:
gradient based method would be not able to exit a local minima, whereas genetic algorithms can, see for
example [7] . The case shown in Figs. 2.4-2.5 is for a secondary circle of radius rs = 0.2, θp = −10o, α0 = 10o,
1.3 ≤ xs ≤ 6.3, −10o ≤ θs ≤ 10o. Each of these intervals is divided in 20 segments and the circulation and
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its derivatives are evaluated at every resulting grid point. For this configuration lift is increasing with the
distance, whereas in the case of Figs. 2.6-2.7 lift is decreasing with distance (rs = 0.6, θp = 30o, α0 = 10o,
1.6 ≤ xs ≤ 6.6, −30o ≤ θs ≤ 30o). In these figures and in the following the results are presented with respect
to the grid points rather than explicitly with respect to the variable relative to the axis.

In Figs. 2.8-2.9 it is shown how with a proper choice of the parameters it is possible to obtain a local
minimum (rs = 0.05, θo

p = −30, αo
0 = 10, 1.15 ≤ xs ≤ 6.15, −30o ≤ θs ≤ 30o). In contrast, with rs = 0.05,

θo
p = 30, αo

0 = 10, 1.15 ≤ xs ≤ 6.15, −30o ≤ θs ≤ 30o; we have a local maximum, with respect to both xs

and θs (see Figs. 2.10- 2.12).

We limited ourself to the explicit computation of the derivatives with respect to xs and θs in order to
present conveniently the results and to keep a link with real world applications where these are basically
the parameters to be varied. It is straight forward, using the derivatives of the elliptic functions, that we
evaluate in the sections before, to determine the differential with respect to any other geometrical quantity
on the plane of the adjacent circles.

5

10

15

20
xs

5

10

15

20

ths

0

2

4

6

Gamma

5

10

15

20
xs

Fig. 2.4. Circulation as a function of xs (xs) and θs (ths): the circulation increases with xs.

3. The Theodorsen-Garrik transform revisited. Here we adapt the Theodorsen-Garrik transform
as proposed by Ives [6], in order to differentiate it by divided differences.

Our scope is to transform the domain exterior to two adjacent airfoils (see Fig. 3.1) on the plane zf ,
into the region bounded by two concentric circles on the plane zc. Let us first transform the primary profile
into a nearly circular region by the Karman-Trefftz transform

(
zf − zTp

zf − zNp

)τ

=
ζ − 1
ζ + 1

(3.1)

with τ = π/(2π − δp), δp being the trailing edge angle of the primary profile, zTp is its location, and zNp is
a point in the vicinity of the leading edge, inside the airfoil. By the Theodorsen transform the quasi circle
on ζ is mapped onto a unit circle on z

ζ = z exp{
∞∑

j=0

[(aj + ibj)z−j ]}(3.2)
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Fig. 2.5. Derivative of the circulation with respect to xs.

5

10

15

20
xs

5

10

15

20

ths

-5

0

5
Gamma
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xs

Fig. 2.6. Circulation as a function of xs and θs: the circulation decreases with xs.

The coefficients aj and bj of the suitably truncated series in Eq. (3.2) are iteratively found by an FFT,
imposing that the points of the unit circle on z are mapped on the border of the nearly circular domain on
ζ. For the details see [6].

The sequence of mappings that transformed the primary profile into a unit circle acted on the secondary
profile as well. Yet, the tangent discontinuity at the trailing edge of the secondary profile is still there,
therefore it is necessary to map the plane z so that the unit circle is unchanged and the image of the
secondary profile is mapped onto a quasi circle. This is done by

ξ − ξT

ξ − ξN

ξ − 1/ξ∗T
ξ − 1/ξ∗N

=
(

z − zTs

z − zNs

z − 1/z∗Ts

z − 1/z∗Ns

)τ

(3.3)

where τ = π/(2π − δs), δs being the trailing edge angle of the secondary profile, zTs is the location on the
plane z, and zNs is a point inside the secondary profile in the vicinity of the leading edge. The constants ξT
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Fig. 2.7. Derivative of the circulation with respect to xs.
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Fig. 2.8. Circulation as a function of xs and θs: the circulation has a local minimum.

and ξN are found as follows. Let

f(z) =
(

z − zTs

z − zNs

z − 1/z∗Ts

z − 1/z∗Ns

)τ

(3.4)

and

g(ξ) =
ξ − ξT

ξ − ξN

ξ − 1/ξ∗T
ξ − 1/ξ∗N

(3.5)

The mappings f(z) and g(ξ) have the singularities df/dz = dg/dξ = 0 for f(zNs) = g(ξN ) and f(zTs) =
g(ξT ). These equations were solved iteratively in [6], whereas we found that they can be solved in a closed
form.

At last, by the Theodorsen-Garrik transform it is possible to map ξ on two concentric circles on the
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Fig. 2.9. Derivative of the circulation with respect to xs.
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Fig. 2.10. Circulation as a function of xs and θs: the circulation has a local maximum.

plane zc:

ξ = zc exp{
∞∑

j=0

[(−a′j + ib′j)(Rzc)−j + (a′j + ib′j)(R/zc)−j ]}(3.6)

where zc = R exp(iθ). The radius R and the coefficients a′j and b′j are obtained by a trial and error process
based on an FFT, as for Eq. (3.2). For example in Fig.( 3.2-3.3) the pressure isolines and the streamlines,
relative to the flow around two wing sections computed by this method, is presented.

3.1. Divided differences derivative. The set of transformations we described in the previous section
is not easily differentiated explicitly, since the Theodorsen tranform and the Theodorsen-Garrick transform
are defined implicitly, and the coefficients are determined by an iterative process. For this reason we decided
to differentiate the mapping from the physical plane to the plane of the concentric circles by divided differ-
ences. Then, we used the results of the analytic differentiation of Section 2 in order to compute the gradient
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Fig. 2.11. Derivative of the circulation with respect to xs.
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Fig. 2.12. Derivative of the circulation with respect to θs.

of the circulation with respect to the three parameters which define the position of the flap with respect to
the main airfoil in the physical space, i.e., (Xs, Ys) the location of the leading edge of the flap and Θ its
angle of attack.

As we mentioned in Section 2, all of the variables (2.11) defining the solution on the plane of the adjacent
circles with focal points in ±1 are functions of Xs, Ys and Θ. We computed the derivative of such functions
by divided differences: for example we gave a small increment to Xs and evaluate the increments of the
variables (2.11) by means of the chain of mappings described in the section above. The differential is then
obtained as the ratio between the increments of variables (2.11) and the increment in Xs.

As an example, we present the results obtained for the case of two adjacent NACA-0012 airfoils. The
incidence of the flow at infinity is 10 degrees and the chord of the flap is 1/10 the chord of the main airfoil;
also, the range for Xs, Ys and 1 ≤ Xs ≤ 1.3, −0.1 ≤ Ys ≤ 0.1 and Θ is and −5 ≤ Θ ≤ −2. These intervals
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Fig. 3.1. Plane of the two airfoils.

Fig. 3.2. Pressure field.

are subdivided on a mesh of 10 points. As it is seen in Fig. 3.4, there exist a non-monotone region of the
circulation manifold. The circulation isosurfaces are plotted for increasing values of lift from top to bottom
(0.71 to 0.74). In Fig 3.5 the gradient is shown with respect to Θ computed as explained in the present
section. The gradient values of the plotted isosurfaces range from 0 to 8 · 10−3 from left to right.

The features of the circulation manifold are influenced by the dimension of the flap as well as by the
incidence of the flow at infinity. An abundance of different behaviors may be obtained changing these
parameters, as in the two adjacent circles case.

4. Conclusions. We presented two optimization test cases. The first concerns the computation of
the circulation functional for two adjacent circles, when the relative position and the trailing edge of the
secondary circle are varied. The gradient with respect to those variables was computed analytically and
results have been presented for several geometrical configurations.
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Fig. 3.3. Streamlines.
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Fig. 3.4. Circulation isosurfaces: increasing values from top to bottom. D-x is the increment in Xs, D-y in Ys and D-a

in Θ.

The second test case was related to the computation of the circulation functional for two adjacent airfoils,
as the secondary airfoil is displaced. Since the mappings involved to compute the theoretical solution are
defined implicitly, we decided to compute the gradient of such transformations by divided differences. Results
showing the nature of the circulation manifold were presented.

In summary, it was shown that the space of solutions for such problems include non trivial situations of
local minima and maxima. Such richness of behaviors and the relatively complicated geometrical optimiza-
tion, which in the case of numerical solution involves remeshing and accurate definition of the gradient for
moving boundaries, should be an interesting feature to test optimization algorithm of different nature.

The codes developed for this study are available at ICASE - NASA Langley Research Center, Hampton,
VA.

15



0
2.5

5

7.5

10
D-a

0

2.5

5

7.5

10
D-x

0

2.5

5

7.5

10

D-y

0
2.5

5

7.5D-a

0

2.5

5

7.5
D-x
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[1] M. Lagally, Die reibungslose Strömung im Aussengebiet zweier Kreise, ZAMM, Band 9, Heft 4, Aug.
1929, pp. 299-305.

[2] A. Iollo and M.D. Salas, Optimum transonic airfoils based on the Euler equations, ICASE Report
No. 96-76, 1996.

[3] B.R. Williams, An exact test case for the plane potential flow about two adjacent lifting airfoils, R.A.E.
Report No. 3717, 1971.

[4] C. Ferrari, Sulla trasformazione conforme di due cerchi in due profili alari, Memorie della Reale
Accademia delle Scienze di Torino, Serie II, Vol LXVII, 1930, pp. 1-15.

[5] F. Tricomi, Funzioni ellittiche, Monografie di Matematica Applicata CNR, Zanichelli, 1951.
[6] D.C. Ives, A modern look at conformal mapping including multiply connected regions, AIAA Journal,

14, No. 8, 1976.
[7] N. Marco, C. Godart, J.A. Desideri, B. Mantel, and J. Périaux, A genetic algorithm compared

with a gradient-based method for the solution of an active control model problem, INRIA Research
report RR-2948, INRIA, France.

16


